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Abstract

This paper presents how neural swimming controllers for a simulated lamprey
can be developed using evolutionary algorithms. A genetic algorithm is used for
evolving the architecture of a connectionist model which determines the muscular
activity of a simulated body in interaction with water. This work is inspired by the
biological model developed by Ekeberg which reproduces the central pattern gen-
erator observed in the real lamprey [Ekeberg 93]. In evolving artificial controllers,
we demonstrate that a genetic algorithm can be an interesting design technique for
neural controllers and that there exist alternative solutions to the biological con-
nectivity. A variety of neural controllers are evolved which can produce the pattern
of oscillations necessary for swimming. These patterns can be modulated through
the external excitation applied to the network in order to vary the speed and the
direction of swimming. The best evolved controllers cover larger ranges of frequen-
cies, phase lags and speeds of swimming than Ekeberg’s model. We also show that
the same techniques for evolving artificial solutions can be interesting tools for de-
veloping neurobiological models. In particular, biologically plausible controllers can
be developed with ranges of oscillation frequency much closer to those observed in
the real lamprey than Ekeberg’s hand-crafted model.

Keywords: Neural control; genetic algorithm; simulation; central pattern gener-
ator; swimming; lamprey.

1 Introduction

As locomotion is one of the most important aspects of living systems, the control of move-
ments has been extensively studied both in biological sciences and engineering. Neurobio-
logy has shown the diversity of effective motion controllers present in the animal kingdom.
These controllers, composed of interconnected neurons, are able to create the oscillatory
activity necessary for motion as well as to adapt to dynamic environments using sensory
information. The controllers are generally distributed and present remarkable robustness
and flexibility. Inspired by these interesting features, roboticists have applied artificial
neural networks to control robots, using abstract mathematical models of neurons for
processing the signals needed for control.



Advances in neurobiology and in robotics are now at a point where models of biolo-
gical controllers can be directly implemented in robots [Beer et al. 93]; neural controllers
inspired by insects have, for instance, been used to control the walking of hexapod ro-
bots [Espenschied et al. 93, Cruse et al. 95]. Robotics benefits from biology as a source
of inspiration on how to solve control problems, and neurobiology may in return benefit
from these experiments by receiving an evaluation of the capacity of a biological model
to produce a specific behaviour.

Another interesting interaction is the use of artificial neural network techniques for
investigating the computations performed by the central nervous system or for developing
neurobiological models. An adapted backpropagation algorithm has, for instance, been
used to develop a biologically plausible connectionist model reproducing the local bending
reflex of the leech [Lockery & Sejnowski 93|. Evolutionary algorithms are another popular
design technique for artificial neural networks [Schaffer et al. 92, Yao 93], which have
recently been used for developing biophysical models of single cells [West & Wilcox 97].

Our research is interested in biologically inspired neural locomotion controllers for
autonomous agents and how to develop controllers using a genetic algorithm (GA). In
particular, we study here anguiliform swimming, one of the simplest forms of locomotion,
which is used by eels and lampreys. Motion is generated by traveling undulations of the
body, without the use of fins. Although simple, this type of locomotion presents the basic
features of any natural motion control, namely the creation and the modulation of sets of
oscillations with characteristic frequencies and phase lags.

This work is inspired by Ekeberg’s connectionist model of the lamprey’s swimming
controller [Ekeberg 93]. Using a GA, we develop artificial controllers by evolving the con-
nections and synaptic weights between neurons similar to those of Ekeberg’s model. We
are interested in evaluating how efficient GAs can be for designing neural networks which
can produce the patterns of oscillation necessary for swimming, and whose activity can be
modulated by simple input signals. A possible application of such a design technique could
be, for instance, the automatic generation of neural controllers for a swimming robot. We
are also interested in investigating whether there exist alternative neural configurations
to the biological one found in the lamprey. Such a study may provide some insights into
what are the necessary characteristics for central pattern generators in general. Finally,
we investigate whether GAs could be used as a tool for neurobiological modeling, with the
evolutionary process instantiating variables such as synaptic weights in a connectionist
model whose connectivity and behaviour correspond to neurobiological observations.

In this paper, we firstly present the current knowledge of the lamprey’s swimming
controller and the connectionist model made by Ekeberg. We then develop alternative
solutions in three evolutionary stages, with firstly the evolution of a segmental oscillator,
secondly the evolution of the couplings between a set of segmental oscillators, and finally,
the evolution of sensory feedback from stretch sensitive cells. As an example of how the
GA could be used to develop biological models, we then repeat the evolutions by adding
constraints on the encoding in order to evolve controllers which preserve the segmental
connectivity observed in the lamprey.

2 Biological background and Ekeberg’s connectionist
model

The lamprey is one of the earliest and simplest vertebrates. It has no paired fins and
swims by propagating an undulation along its body, from head to tail. The network



of neurons located in its spinal cord which controls the motion has been extensively
studied [Buchanan & Grillner 87, Grillner et al. 88, Grillner et al. 91, Grillner et al. 95].
Physiological experiments on isolated spinal cords have shown that this network of neur-
ons is a central pattern generator (CPG), which means that it can generate patterns
of oscillation without oscillatory excitation either from the brain or from sensory feed-
back [Delcomyn 80, Grillner et al. 88, Getting 88|. Because small parts of the spinal cord
can be isolated (up to 2 segments) and still produce oscillations when subjected to an
excitatory bath, the CPG is considered to be an interconnection of local (segmental)
oscillators. The complete controller is formed of approximately 100 of these segments.
The CPG can produce oscillations at frequencies varying between 0.25 and 10 Hz; and it
maintains constant wavelength of the undulation (usually corresponding to the length of
the body) as the frequency is changed.

The CPG controlling the swimming has been modelled at several levels of abstraction,
namely at a biophysical, a connectionist and an abstract oscillator level. Biophysical
models using relatively realistic neural models have demonstrated that the current state
of knowledge of the lamprey is sufficient to produce models whose results agree with the
physiological observations [Ekeberg et al. 91, Wallén et al. 92]. Connectionist models of
the CPG [Buchanan 92, Williams 92, Ekeberg 93] use less realistic neuron models which
capture only the main feature of neurons, that is, their ability to change the frequency of
action potential spikes in their axon (the output) depending on the sum of activity in their
dendrites (the total input). These have demonstrated that the connectivity in itself is suf-
ficient to produce many of the oscillation patterns observed in the real lamprey without the
need for complicated neuronal mechanisms. Finally, at the most abstract level, the swim-
ming controller can be modeled as a chain of mathematical oscillators in order to study
which kind of couplings can produce a phase relation between segments which is constant
over the whole spinal cord of the lamprey and also remains a fixed proportion of a cycle
when the frequency of the oscillations is changed [Kopell 95, Williams & Sigvardt 95].

The work presented here is situated at the connectionist level. A connectionist model
has the advantages of being abstract enough to be tractable, in the sense that the sim-
ulation of the complete CPG (segments over the whole spinal cord) and of a mechanical
simulation of the body of a lamprey do not require too much computation time and too
many parameter choices. At the same time it is concrete enough to give some interesting
insights into the functioning of the CPG of the real lamprey (as mentioned above, connec-
tionist models can produce most of the oscillation patterns observed in the real lamprey).
Finally, the connectionist models made for modelling the lamprey’s CPG are very sim-
ilar to those currently used for the control of some robots [Lewis et al. 93]. Therefore,
learning how to design them may be directly applicable to the design of a controller for a
swimming robot, for instance.

We have reproduced Ekeberg’s two-dimensional connectionist model [Ekeberg 93].
This model has inspired our work and it is the biological model with which our evolved
controllers will be compared. We will refer to it as the biological model. The model com-
bines a simulation of the neural controller with a mechanical simulation of a lamprey in
water allowing direct evaluation of how neural activity is transformed into mechanical
movements. It also offers the possibility of investigating the effect of sensory feedback

! This maintenance of constant wavelength over a large range of frequencies is an interesting aspect
of the CPG. It means that the phase lag between segments is maintained at a constant proportion of
the period of oscillations and that the time delays between segments vary considerably depending on the
frequency. The lags between segments can not therefore be due to delays in conduction along descending
axons because axons have, more or less, fixed velocities of conduction.



from stretch sensitive cells. We present here the model and give some quantitative results
(Ekeberg’s paper [ibid.] presents mainly qualitative behaviours of the model) which will
be compared with the performances of the evolved swimming controllers.

The neural controller is composed of 100 interconnected segmental networks (Fig-
ure 1). Each segmental network is an oscillator made of two motoneurons (MN), two
excitatory interneurons (EIN), two contralateral inhibitory interneurons (CIN) and two
lateral inhibitory interneurons (LIN). Each neuron unit in the model represents a popula-
tion of functionally similar neurons in the real lamprey. Neurons receive excitatory input
from the brainstem. The weights of the segmental connections are given in Table 1. The
complete controller is formed by interconnecting 100 copies of this segmental network.
An interconnection consists of extending the connection from one neuron to another in
one segment to the corresponding neuron in neighbouring segments (Table 1). Because
the interconnections in the lamprey are not well known, Ekeberg has simplified them by
choosing a symmetric extension (in the caudal and rostral direction) for all connections
except for the extensions from CIN which project more caudally.

A neuron unit is modeled as a leaky integrator with a saturating transfer function. Its
output u corresponds to the mean firing frequency of the population it represents (€ [0, 1])
and is calculated as follows:

f.+ = %(Z uiw; — &) (1)

£ = (X w—€) @)

g = %(u—ﬂ) (3)

u = { 1—exp{(© - &)} =& —pd (u>0) (4)
0 (u<0)

where w; are the synaptic weights, ¥, and W_ represent the groups of pre-synaptic
excitatory and inhibitory neurons respectively, £, and &_ are the delayed ‘reactions’ to
excitatory and inhibitory input and ¥ represents the frequency adaptation observed in
some real neurons. The parameters of each type of neuron are given in Table 2. These
parameters, as well as the connection weights of Table 1, have been defined so that the
simulation of the model fits physiological observations [Ekeberg 93].

When the segmental networks receive adequate excitation from the brainstem, they
oscillate regularly with the left and right neurons out of phase. The frequency of oscilla-
tions increases with the level of excitation. The interconnections between segments leads
to traveling waves of oscillations when the most rostral segments receive extra excitation
compared to the others. The lag between segments relative to the period of oscillation
is then constant over the whole spinal cord, except for the first and last ten segments
at the extremities where it decreases towards zero. The value of the lag varies with the
amount of extra excitation, and the higher the extra excitation, the larger the lag (or the
shorter the wavelength). Interestingly, the frequency of oscillation and the wavelength of
the undulation can be changed nearly independently. The model can therefore reproduce
the capacity of the real lamprey to cover a whole range of different frequencies of oscil-
lations while keeping the wavelength of the undulation constant. Our simulations show
that frequencies between 1.6 and 5.5 [Hz] and phase lags per segment between 0.0% (no
travelling wave) and 2.4% of the period can be obtained (the wavelength is then smaller
than 50% of the 100-segment body).



We have also reproduced Ekeberg’s mechanical model of the lamprey’s body inter-
acting with water [Ekeberg 93]. The body is made of 10 rigid links connected through
one-degree of freedom joints, with each mechanical link corresponding therefore to 10
neural segments. Muscles are connected to each link and are modeled as a combination of
springs and dampers. The motoneurons can ‘contract’ muscles by increasing their spring
constant, thus reducing their resting length. Propulsion through water is obtained when
the traveling waves of neural activity are transformed into traveling undulations of the
body. The head to tail propagation of the undulation leads to forces from the surround-
ing water which propel the fish forward. We have simulated the biological model over
the whole range of frequencies and phase lags the neural controller can produce, and the
highest speed the simulated lamprey can reach is 0.50 m/s (with oscillations at 5.5 Hz
and relative lags between segments of 1.2%).2

The mechanical simulation allows a direct evaluation of the efficiency of the CPG to
control swimming (in terms of speed of swimming, for instance). It also allows study of
the effect of sensory feedback from the edge cells, which are stretch-sensitive cells located
on both sides of the spinal cord [Viana Di Prisco et al. 90]. These cells can be modeled as
outputing a signal proportional to the local curvature of the body. While in [Ekeberg 93]
the effects of the edge cells on the controller are negligible (very low synaptic weight),
in [Ekeberg et al. 95], it is shown that feedback can help the lamprey to cross a speed
barrier (water with local speed opposite to the direction of swimming) by coordinating
the neural activity with the actual movements of the body and preventing a change of
direction.

3 Evolving central pattern generators

We develop alternative swimming controllers by using the GA to define suitable connec-
tions and synaptic weights between neurons similar to those of Ekeberg’s model. The
similarity of the neuron models will allow us to directly compare the performances of
the evolved solutions with those of the biological model. The controllers are evolved in
three stages. First, segmental oscillators are evolved; then multi-segmental controllers
are generated by evolving the couplings between copies of a chosen segmental oscillator;
and, finally, connections providing sensory feedback from stretch-sensitive cells are ad-
ded. The first stage requires only the simulation of the neural activity within a segment,
while the two last are realised with a simulation of the whole controller together with the
mechanical simulation of the body interacting with water. This decomposition into stages
was motivated by properties of the biological controller we wanted to reproduce. Firstly,
segmental networks can oscillate independently when isolated from the others and from
sensory feedback. Secondly, being a CPG, the multi-segmental controller can produce
coordinated traveling waves of oscillations in a completely isolated spinal cord indicating
that there is no need for sensory feedback for the intersegmental coordination. Finally,
it appears that the role of feedback from stretch sensitive cells is mainly necessary for
coordinating the neural activity with the actual movements of the body when these are
disturbed by the environment. The third stage therefore includes the simulation of a
speed barrier which can only be crossed when sensory feedback is provided to the CPG.

2We have corrected some of Ekeberg’s mechanical values and therefore obtain speeds of swimming
which are approximately 40% smaller for the two quantitative examples given in [Ekeberg 93]. However,
the qualitative behaviours of the two simulations are identical. See [Ijspeert et al. 98a] for more details.
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Figure 1: Biological controller. The controller is made of 100 interconnected segmental oscil-
lators (only 4 segments shown) composed of 8 neurons each. Four types of neurons are present
in the oscillators: 3 types of interneurons EIN, CIN and LIN and the motoneurons MN. The
controller can receive feedback from the stretch sensitive edge cells EC. The dashed lines indicate
the projections from segmental connections to neigbouring segments. See text and Table 1 for
more explanations.

mffmm’ EINI CINI LINI EINr CINr LINr BS
EINl | 042 2] - - - =201, 10] - 20
CINl | 3.0(2 2] - -1.05, 5] - —2.0[1, 10] - 7.0
LINI | 13.0 [5, 5] - - - —1.0[1, 10] - 5.0
MNI 1.0[5,5 - - - =205, 5] - 5.0
EINr - 201, 10] - 0412, 2] - - 20
CINr - 201, 10] - 3.0([2 2] - -10[5,5] 7.0
LINr - —1.01, 10] - 13.0 [5, 5] - - 5.0
MNr - =205, 5] - 105, 5] - - 50

Table 1: Biological configuration, as given in [Ekeberg 93]. Excitatory and inhibitory connec-
tions are represented by positive and negative weights respectively. Left and right neurons are
indicated by ! and r. BS stands for brain stem. The number of segments to which connections
from a particular segment extend, in the rostral and caudal directions respectively, are given in
brackets.

Neuron type (C) T ™ W TA
EIN —0.2 1.8 30ms 0.3 400 ms
CIN 0.5 1.0 20ms 0.3 200 ms
LIN 80 0.5 50ms 0.0 -
MN 0.1 0.3 20ms 0.0 -

Table 2: Neuron parameters, as given in [Ekeberg 93]. © is the threshold, I" the gain, 7p the
time constant of the dendritic sums, u the coefficient of frequency adaptation and 74, the time
constant of the frequency adaptation.



The controllers are evaluated depending on their ability to control swimming. In order
to obtain similar performance to the biological controller, we define the following goals
for the evolved controllers:

e production of stable oscillations over the spinal cord,
e generation of phase lags between segments,
e frequency of oscillation dependent on global excitation,

e lag between segments dependent on the proportion of extra excitation of the most
rostral segments,

e independence of lag and frequency,
e large ranges of frequencies, lags and speeds of swimming,

e capacity to incorporate sensory feedback from stretch sensitive cells for crossing a
speed barrier.

3.1 First evolutionary stage: Segmental oscillators

A segmental oscillator is generated by evolving both the connectivity between the 8 neur-
ons composing the biological segment and the sign (excitatory and inhibitory) of each
interneuron. The quality of a solution is evaluated depending on its ability to produce
regular oscillations whose frequency can be varied with the level of excitation.

EINI CINI | LINI EINr | CINr LINr | Brain Stem
From: EINleft CINIeft LINleft  Brain stem I 27 43
CINI 35 | -42 108
_ HNNNENEE BENEEEEE NERERREREEEN A C U 30
‘ ‘ ‘ MNI | 60 3.0 58
To. el ‘ EIN “ el ‘ EINT 13 | -08 43
CINI CINr Sign genes CIN CINr 27 35 | 42 108
L'N,\'ANl L”\,\‘/[Nr oo L”R‘AN LINr 74 30
MNF 30 60 58

Figure 2: Encoding of a segmental network.

Encoding A chromosome represents the connectivity between the 8 neurons of the
biological model. The number of neurons and their dynamics (defined by the 5 parameters
of equations 1-4) are thus fixed and only the sign of neurons and the synaptic weights of
the connections are evolved. We impose a left-right symmetry. A chromosome is a string
of 31 genes which are real numbers between 0 and 1 (Figure 2). There are three sign genes
which define whether the interneurons are inhibitory or excitatory.®> The motoneurons are
excitatory. The other genes directly encode the synaptic weights and correspond (via a
linear transformation) to a real value between -5 and 0 or between 0 and 15, depending
on the value of the sign gene (the interneuron is inhibitory if the sign gene is smaller than

3We chose to have neurons which are either inhibitory or excitatory (rather than neurons which could
both inhibit and excite other neurons) in order to develop networks under the same constraints as the
biological model, in the sense that biological neurons do not usually emit both excitatory and inhibitory
neurotransmitters.



0.5 and excitatory otherwise). Finally the four last genes of a chromosome determine the
synaptic weights of the connections coming from the brain stem and correspond to a real
value between -5 and 15. The weight boundaries (-5 and 15) have been defined so that
they include the range of weights of the biological model (-2 and 13). Note that, although
we will keep the denominations EIN, CIN and LIN to distinguish between the different
types of interneurons (the different neuron dynamics given by equations 1-4), they lose
their meaning as a description of the function or even the sign these neurons had in the
biological model.

Genetic Algorithm The algorithm used is a variation of the standard GA (see for
instance [Goldberg 89]) with the usual binary encoding being replaced by a real number
encoding. The algorithm starts with a randomly generated initial population. At each
generation, a fixed number of children are generated using three operators, crossover,
mutation and pruning. The crossover operator chooses couples of parents, with a rank-
based probability, for breeding and creates couples of children either by two-point crossover
(probability Prob_Xowver) or by simply copying the two parents. The mutation operator
mutates each gene of the children with a probability Prob_mut and the mutation consists
of adding or substracting a small random number within a mutation range:

new_value = old_value + Mut_Range - rand

where rand is a random number € [—0.5,0.5]. Finally, the pruning operator is applied
which randomly prunes a connection (probability Prob_prun) by setting the gene to the
value corresponding to a null weight. The children are then evaluated, and the size of
the population is kept constant by rejecting, at each generation, the worst solutions of
the increased population (old population plus children). The GA parameters used for the
evolution of segmental oscillators are given in Table 3.

Population size 100
Number of children 30

Crossover probability | 0.5
Mutation probability | 0.4
Mutation range 0.2
Pruning probability 0.1

Table 3: GA parameters for evolving segmental oscillators

Evaluation We define a fitness function that rewards three desired characteristics for
segmental oscillators:

1. The production of regular oscillations of the motoneurons, with one peak of activity
per period and with the left and right neurons out of phase.

2. A frequency of oscillation which can be varied and which increases monotonically
with the level of external excitation.

3. A minimal set of connections. In [Ijspeert et al. 97|, we evolved fully connected
solutions, the weakest connections of which proved unnecessary for the creation of
oscillations and could be removed without affecting the neural activity.



The mathematical definition of the fitness function is given in Appendix A1l. Solutions
are evaluated by fixed-duration simulations (simulated time of 3000 ms) with asymmetric
initial conditions (all left neurons excited). If a network oscillates regularly, simulations
with different levels of external excitation are carried out in order to determine its range of
frequencies. Note that the evaluation of the fitness of a segmental oscillator is only based
on the neural activity of the motoneurons because they are the only neurons influencing
the muscular activity. This means that the interneurons can have any activity and that
solutions with fewer than 8 active neurons can be developed.

Results We carried out 10 evolutions with populations of 100 chromosomes. The evol-
utions were stopped after 500 generations, an arbitrarily chosen limit which was sufficient
for the best solutions of each run to reach a fitness value higher than 0.3. Each evolu-
tion started with a different randomly generated initial population. When the neurons
are randomly connected, there is little chance of the resulting network oscillating. In
our case, only 3 solutions within the 1000 initially generated solutions produce regular
oscillations, and this only at a fixed frequency.* Within 500 generations, all evolutions
converged to final populations composed of networks producing regular oscillations with
variable frequency. Similary to the biological model, the frequency of oscillations and the
amplitude of the motoneuron signals increase with the level of tonic excitation. When
the oscillator receives too little excitation, the motoneurons stay inactive, and when the
excitation level is too high they stabilize, after a few oscillations, in an asymmetrical state
with one active and one inactive motoneuron. The fittest solutions of all runs cover a lar-
ger range of frequencies than the biological model, reaching lower and higher frequencies.
The results are summarized in Table 4.

The ten runs did not all converge to the same network configuration, but rather
to several different solutions with similar fitness values (see [Ijspeert et al. 98a] for a
detailed description of all the evolved configurations). These best solutions differ not
only in their connectivity, but also in the sign of the interneurons and in the number
of neurons active in the creation of oscillations. Six evolutions converged to networks
with only 6 rather than 8 active neurons. These solutions are composed of the two
motoneurons and four inhibitory interneurons of two different types which create the
oscillations. This demonstrates that excitatory interneurons are not necessary (at least in
a connectionist model) for the production of oscillations over a large frequency range. Most
often the inactive neurons are the LINs, which is probably due to their high threshold;
they have more chance to be inactive unless they receive some strong excitatory input.
Amongst these six runs, four (runs 3,6,8 and 10) converged to similar configurations
based on an identical oscillator structure (when the possible permutations due to the
left-right symmetry are taken into account) composed of inhibitory EIN and CIN and
the motoneurons (Figure 3). Although there are some variations of the values of the
connection weights, the solutions have all the same connections with similar strengths
and present the same behaviour. Figure 4 shows the simulation and the configuration of
one of them.

Although most of the evolved oscillators differ significantly from the biological seg-
mental network, one controller (the best solution of run4) presents strong similarities
with it. That solution is composed of the same interneurons — same number and with
the same sign — as the biological model. Furthermore, although it has more connections

4Note that the random configurations which do not oscillate still receive different fitness values de-
pending on how much the amplitudes of their motoneurons vary before reaching the equilibrium state.



Fitness Frequency range Oscillating Number of
value in [Hz] neurons connections
Biol. model | 0.18 1.7, 5.6] EIN+,CIN-,LIN- 26
runl 0.44 [1.0, 8.4] EIN—,CIN+,LIN—- 32
run2 039  [LO, 6.8] EIN— LIN-— 34 - 24
run3 043  [L1, 7.7] EIN—,CIN— 34 — 26
rund 047  [12, 9.9] EIN+,CIN— LIN— 38
run5 040  [L1, 7.9 EIN—,CIN—,LIN— 34
run6 0.51 [1.1, 11.3] EIN—,CIN— 40 — 24
run? 054  [L2, 8.0] EIN—,CIN— 32 - 24
run8 031  [L1, 5.] EIN—,CIN— 36 — 22
run9 0.60 [1.0, 10.4] EIN—,CIN+,LIN— 32
run10 044  [13, 8.6] EIN—,CIN— 28 — 22

Table 4: Summary of results for the evolved segmental networks. The table gives, for the
best solution of each population, the lowest and the highest frequency at which the segmental
network can oscillate, the interneurons active in the oscillator with the sign of their influence
and the number of connections of the oscillator. When fewer than 6 interneurons are active, the
number of connections after complete removal of the inactive neurons are given.
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Figure 3: Segmental network configuration to which four out of ten runs converged (runs 3,6,8

and 10).
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Figure 4: Left: oscillations in an evolved segmental network (run 6). Right: corresponding

neural configuration.
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than the biological model, it has a similar structure with inhibitory connections from
the CIN to all the neurons on the contralateral side and a strong inhibitory connection
from the LIN neurons to the CIN neurons on the same side acting as a burst terminator.
As with the biological model, the LIN becomes active later in the cycle and inhibits the
ispilateral CIN allowing the activity on the other side to start.

The pruning operator of the GA has led to solutions using significantly fewer than the
56 possible connections. The solutions have therefore few weak (low weight) connections
which do not play an important role in the creation of oscillations. In the case of solutions
which use fewer than 8 neurons, the majority of the connections to and from the inactive
neurons have been cut; for these solutions Table 4 gives the number of connections before
and after the removal of the inactive neurons.’®

3.2 Second evolutionary stage: Multi-segmental controllers

We generate complete CPGs by evolving the interconnections between fixed segmental
networks. The best segmental oscillators of each evolution of the previous evolutionary
stage are chosen. The evaluation of complete CPGs is based on simulations of both the
neural activity and the mechanical movements of the body. The quality of the solutions
will depend on their capacity to control swimming at different speeds, frequencies of
oscillation, and lags between segments.

Encoding and GA A chromosome encodes how the segments are interconnected. Sim-
ilarly to the biological model, interconnections are extensions of segmental connections to
the corresponding post-synaptic neurons in neighbouring segments. For each segmental
connection, the extensions in each direction are encoded into a chromosome with values
between 0 (no extension to neighbour segments) and a maximal extension of 12 (this
value has been chosen to include the maximal extension of the biological model which is
10). The number of genes is therefore twice the number of segmental connections. As
previously, a left-right symmetry is assumed. The connection weights of the segmental
networks are fixed except for a rescaling depending on the extension of the interconnec-
tion: the weight of a connection to a neuron is divided by the number of segments it
receives input from.

The same GA as for the evolution of segmental oscillators is used but without the
pruning operator. Although the genes are transformed into integers when the chromosome
is decoded, they are real numbers in the GA. The GA parameters for the evolutions are
given in Table 5.

Population size 40
Number of children 12
Crossover probability | 0.5
Mutation probability | 0.4
Mutation range 0.2

Table 5: GA parameters for evolving multi-segmental controllers.

5The fact that there are still some weak connections which could be removed without affecting the
oscillation is due to the fact that the mutation operator can at any time give a non-zero value to a
weight which had previously been pruned (set to zero). The mutation operator therefore slows down the
convergence to the minimal set of connections.
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Evaluation Multi-segmental controllers are evaluated for their capacity to control swim-
ming in the mechanical simulation. The required features for the controllers are:

1. generation of stable oscillations in the 100 segments with coordinated phase differ-
ences for the creation of traveling undulations of the body,

2. ability to change the speed of swimming by changing either the frequency of oscil-
lation or the wavelength of the undulation,

3. ability to change the frequency and the wavelength independently, by changing,
respectively, the global excitation level and the amount of extra excitation on the
most rostral segments.

The mathematical definition of the fitness function is given in Appendix A2. The
evaluation of a controller consists of several simulations with different levels of global
excitation and extra excitation of the most rostral segments in order to determine their
influence on the frequency, the phase lag between segments and the speed. In order
to allow comparisons with the biological controller, a special emphasis is given to the
capacity to swim with a wavelength corresponding to the length of the body (phase lag
per segment of 1%), and therefore the capacity to change the frequency over a large range
is only measured for lags close to 1%.

Results We carried out 10 evolutions based on the best evolved segmental oscillators
of the previous evolutionary stage. Each population is made of 40 chromosomes and
evolutions are stopped when the fitness of the fittest solution of the population ceases to
increase significantly (between 75 and 300 generations depending on the run).

The random coupling of the initial populations has a different effect depending on the
segmental network. Some segmental networks are quite robust and produce stable oscil-
lations despite the random couplings, but most of them fail to produce stable oscillations.
A general observation is that, among the randomly connected segmental oscillators which
can produce stable oscillations, very few can have the phase between segments varied with
the extra excitation on the first segments.

All runs successfully converged to controllers capable of generating stable oscillations
with phase lags between segments for relatively large ranges of frequency and phase lags.
Similarly to the biological model, the evolved CPGs produce lags between segments which
are constant over the whole spinal cord, except for the extremities (because of the lack
of extensions from the boundaries, the segments at the extremities tend to oscillate in
phase). The lags increase when extra excitation is applied to the most rostral segments.
After the evolutions, we tested the best solutions of each run over a whole range of
levels of excitation and extra excitation in order to determine their exact ranges of speed,
frequency and phase lag. The results are summarized in Table 6.

The multisegmental controllers cover approximately the same range of frequency as
the corresponding isolated segmental networks. Five evolved controllers cover a larger
range of phase lags than Ekeberg’s solution, with a maximum lag of 3.8% for the solution
of run4. The speed range covered by the evolved solutions is also generally larger than
the range of Ekeberg’s model (8 solutions reach higher speeds). Note that some solutions
swim slowly backwards when all segments oscillate in phase (no extra excitation on the
first segments), because of the kind of wriggling they then perform. Also, some solutions
produce lags even without extra excitation of the first segments.
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Fitness Frequency range Relative lag Speed range

value in [Hz)] range in [%)] in [m/s]
Biol. model | 0.08 [1.6, 5.6] [0.0, 2.4] [-0.03, 0.50]
runl 0.07 [1.9, 8.5] [0.0, 1.9] [—0.04, 0.59]
run2 0.09 [1.0, 6.8] [0.1, 3.1] [ 0.06, 0.58]
run3 0.07 1.1, 7.8 [0.0, 2.0] [ 0.08, 0.49]
run4 0.13 [0.8, 10.1] [0.0, 3.8 [-0.03, 0.53]
runb 0.26 1.1, 8.4] [0.0, 3.6] [-0.10, 0.55]
run6 0.02 1.1, 7.0] [0.0, 1.3] [ 0.07, 0.51]
run’? 0.02 1.2, 7.5] [0.0, 2.0] [-0.03, 0.52]
run& 0.10 1.1, 5.8 [0.0, 3.0] [-0.03, 0.56]
run9 0.13 [2.0, 11.0] [-1.7, 3.5] [-0.07, 0.50]
runlO 0.18 [3.3, 8.7] 0.3, 2.2] [ 0.18, 0.60]

Table 6: Summary of results for the evolved multi-segmental controllers. The table gives, for
the best solution of each population, the ranges of frequency, phase lag and speed it can produce.

Although most solutions cover larger ranges of frequencies and phase lags than the
biological model, the independence of control of these variables is usually less good. For
several solutions, for instance, increasing the global level of excitation not only increases
the frequency of oscillations but also influences the relative lag between segments (usually
decreasing it). This problem is illustrated by the best solution of run9 which can reach
high frequencies and high lags, but not both together, which explains why its maximum
speed is relatively low (a combination of high frequency and high lag is necessary for high
speeds in our mechanical simulation).® Our fitness function has not prevented this relative
lack of independence because, although it rewards independence, it does it only for the
small area of the global excitation versus extra excitation space that is visited for the
evaluation. The dependence occurs mainly at high levels of global excitation and extra
excitation which are not visited for the evaluation. This relative problem could probably
be solved by sampling more combinations of both types of excitation for the evaluation.

There are no clear conclusions to make from the way the segmental networks are
coupled (see [Ijspeert et al. 98a] for a detailed description of all the evolved configura-
tions). The extents of the interconnections vary considerably from one solution to an-
other, and there is, for instance, no systematic coupling favouring one direction. The
extents of the coupling and the asymmetries vary depending on the types of the connec-
ted neurons, the influence of the connection, the phase differences between the activities
of the neurons within the segmental oscillator, etc. A few general observations can, how-
ever, be made. On average, the ipsilateral connections between neurons of the same type
(the self-connections) extend more rostrally than caudally while the contralateral connec-
tions between neurons of the same type extend more caudally. Also a large majority of
the inhibitory connections sent to the motoneurons extend more caudally. Finally the
CPGs based on similar segmental oscillators have also similar couplings, with the same
asymmetries of coupling for most segmental connections.

Figure 5 shows a simulation of one of the evolved multi-segmental controllers. Interest-
ingly, the evolved CPGs can also perform turning although this aspect has not been taken
into account in the evaluation functions. Similarly to the biological controller, giving a
higher excitation level to one side of the spinal cord leads to a difference of the motoneuron

6Note that the best solution of run9 also has the idiosyncrasy of producing, for some levels of global
excitation, a caudal to rostral traveling wave when it receives no extra excitation. As soon as some extra
excitation is given, the undulation travels from head to tail.
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Figure 5: Simulation of one of the evolved swimming controllers (best of run7). The frequency
of oscillations is 4.0 Hz, the phase lag between segments is 1.1% of a cycle duration and the speed
of swimming is 0.41 m/s. Left: Neural simulation, the continuous line correspond to the MN,
the dashed line corresponds to the CIN and dotted-dashed line to the EIN. Right: Mechanical
simulation, there are 60 ms between each snapshot, and the dotted vertical lines are separated
by 100 mm.

amplitude and, because of stronger muscle contractions on one side, to a change in the
direction of swimming. In the case of the evolved controllers, some left-right permuta-
tions of the interneurons may be necessary for optimising the turning ability (because of
the left-right symmetry, these permutations have no effect on straight swimming). For
instance, for avoiding antagonistic effects on the motoneuron amplitude when extra ex-
citation is applied, the neurons sending inhibitory connections to a motoneuron should
be on the contralateral side. Finally, initial tests on some of the evolved controllers show
that it is possible to produce backwards swimming by giving more excitation to the most
caudal segments and therefore inducing a tail to head undulation, but only very limited
lags and speeds can then be obtained.

3.3 Third evolutionary stage: Sensory feedback from stretch
sensitive cells

The CPGs evolved so far work in an open loop, in the sense that they receive no feedback
from the mechanical simulation. In the lamprey, sensory feedback is provided to the
CPG by stretch sensitive cells (the edge cells) situated on both side of the spinal cord.
There are both inhibitory and excitatory edge cells and they emit signals proportional
to their elongation [Viana Di Prisco et al. 90]. These cells are useful for coordinating the
neural activity with the actual body movements. Ekeberg showed in particular that this
sensory feedback is necessary for crossing a barrier of water with local speed opposite to
the direction of swimming [Ekeberg et al. 95]. We show here a preliminary experiment
on how to evolve this sensory feedback for the artificial controllers in order to allow them
to cross a similar speed barrier.
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Encoding and GA A chromosome encodes how each segmental oscillator receives sens-
ory feedback from two stretch sensitive cells situated at the sides of the corresponding
part of the spinal cord. It encodes the synaptic weights of the connections from one edge
cell to the 8 (or 6) neurons of the corresponding segmental network. We impose symmetry
between both sides of the segmental network as well as over the whole spinal cord (the 100
segments). Each connection can be either excitatory or inhibitory and genes are decoded
into synaptic weights between -2 and 5. Note that we have fixed these boundaries to
be relatively small in order to prevent the sensory feedback disturbing the production of
oscillations. The same GA with the same parameters as for the first evolutionary stage
is used (Table 3), but without the pruning operator.

Evaluation Solutions are rewarded depending on their ability to cross a speed barrier.
The barrier is 150 mm wide (half the length of the simulated lamprey) and the speed of
the water flow opposite to direction of swimming is set to be 40% higher than the speed
of swimming of the lamprey. The fitness function is defined to reward:

1. progression through the barrier in the direction of swimming,
2. minimal deviation in the direction,
3. minimal difference of speed between swimming with and without sensory feedback.

This last point was added to prevent important changes in the swimming patterns when
sensory feedback is given to the controller. Evaluations are realised at a chosen combin-
ation of frequency of oscillations and phase lag between the segments (approximately in
the middle of their respective range). The mathematical definition of the fitness function
is given in Appendix A3.

Results We carried out 5 runs (populations of 40 chromosomes) using the best controller
of run7 of the previous evolutionary stage. This controller was chosen because it combines
relative large ranges of frequencies, lags and speeds and an independence of control of the
frequency and the lag similar to the biological model. Sensory feedback is evolved to all 6
neurons forming the segmental oscillator (2 EINs, 2 CINs and 2 MNs). The chosen levels
of excitation produce swimming (without sensory feedback) at a frequency of oscillations
of 4.0Hz, a relative lag of 1.1% and a corresponding speed of 0.41 m/s. The speed of the
barrier was set to 0.57 m/s (40% higher than the speed of swimming). Without sensory
feedback, the lamprey is not able to cross the speed barrier (Figure 6, top). The increase
in local forces at the entrance to the barrier disturbs the undulation of the body and
leads to extra bending of the upper part of the body which forces the lamprey to change
its direction of swimming. The lamprey eventually swims perpendicularly to its initial
direction.

All runs converged within 80 generations to controllers able to cross the speed barrier
(Figure 6, bottom). The connections from the stretch sensitive cells are not identical in
all the evolved controllers. All solutions have, however, evolved excitatory connections
from the stretch sensitive cells to the interneurons inhibiting the motoneurons on the
contralateral side, therefore preventing excessive bending. The solutions have also de-
veloped strong excitatory connections from the stretch sensitive cells to the motoneurons.
Interestingly, these connections are not only ipsilateral (to prevent excessive bending) but
also contralateral. The overall effect is that the amplitudes of the motoneuron signals are
approximately 20% larger than without sensory feedback. The excitatory feedback to the
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Figure 6: Effect of a speed barrier on swimming without (top) and with (bottom) evolved sensory
feedback.

motoneurons leads thus to a stiffer body of the lamprey, which is therefore less sensitive
to the extra forces due to the barrier. Note that it is possible (see [Ijspeert et al. 98a])
to evolve controllers which can cross a speed barrier without relying on an increase of
the motoneuron amplitudes by evolving sensory feedback only to the interneurons. The
crossing is then more difficult, however, and we had to reduce the speed of the barrier
to obtain successful controllers (30% of the swimming speed). In that case, the sensory
feedback acts only as a burst terminator which tends to switch the neural activity from
one side to the other when the latter is over extended.

3.4 GAs as tool for neurobiological modeling

The method presented previously can also be used to develop connectionist models which
present more similarities with the circuitry found in the lamprey. We believe that a GA
could be a useful tool for neurobiologists to develop models when it is used to auto-
matically generate instantiations of variables which are difficult to measure. As an il-
lustration of this, we repeated the evolutions, with the same evolutionary stages and
the same fitness functions, and restricted the space of possible solutions to controllers
which preserve the segmental connectivity and the sign of neurons observed in the real
lamprey. We here summarize the results of those evolutions; for more information, see
[Ijspeert et al. 98a, Ijspeert et al. 98b].

We firstly evolved segmental oscillators by evolving the synaptic weights of a network
with a fixed configuration corresponding to the biological segmental connectivity. We
found that Ekeberg’s set of synaptic weights could be modified in order to optimize
the frequency range. Frequency ranges much closer to those observed in real lampreys
(between 0.25 and 10 Hz) could be obtained (the best solution covered a range between 0.9
and 11.0 Hz). The main observation is that the increase of the frequency range is obtained
through an increase of the strength of some inhibitory connections (the contralateral CIN
to LIN and ispilateral LIN to CIN connections).

16



In the second evolutionary stage, we evolved the couplings between segmental oscil-
lators corresponding to those of Ekeberg’s biological model. As these coupling are not
perfectly known in the real lamprey, the idea was to study which kind of interconnections
can produce phase lags between segments which are constant over the spinal cord and
independent of the frequency of oscillation. There are opposing views on the origin of
these phase lags in the real lamprey, in particular whether they are due to differences in
the intrinsic frequencies of the oscillators or to the nature of the coupling, and, in the
latter case, whether the dominant coupling is ascending or descending (see for instance
[Matsushima & Grillner 92, Wadden et al. 97]). We evolved interconnections with the
same fitness function as for the artificial controllers and developed couplings which could
produce the kind of phase lags observed in the real lamprey. The evolved solutions cover
large ranges of lags and can reach slightly higher speeds than with Ekeberg’s coupling.
The evolved couplings in the five different runs we carried out (populations of 40 chro-
mosomes) were all very similar, and significantly different from the simplified coupling of
Ekeberg’s model. We find that the evolved CPGs seem to have no dominant coupling (for
instance, no systematic asymmetry) and they present both rostral and caudal asymmet-
ries of projection depending on the segmental connection. As for Ekeberg’s coupling, the
CPGs rely both on the nature of the couplings and on differences of intrinsic frequencies
for creating travelling waves. The coupling is optimized for waves to travel from head to
tail and the extra excitation of the most rostral segments determines the exact phase lag
(giving more excitation to those segments amounts to increasing their intrinsic frequency).

Finally, we also evolved sensory feedback to Ekeberg’s controller which enabled
the simulated lamprey to cross a speed barrier. Interestingly, the evolved connections
correspond very closely to those observed in the real lamprey, with all connections
from excitatory and inhibitory stretch sensitive cells established in the real lamprey
[Viana Di Prisco et al. 90] being also present with the same sign in the evolved control-
lers. Crossing a speed barrier may therefore be a good example of the situation for which
sensory feedback has been developed through natural evolution for the real lamprey.

4 Discussion

4.1 Discussion of the Method

Staged evolution Controllers were evolved in different stages in order to simplify the
problem by decomposing it into subproblems. The decomposition was motivated by sim-
ilar decompositions in the real lamprey and gave the possibility of direct comparison
between evolved solutions and the biological model. One advantage of such a decompos-
ition is to reduce the time needed to evolve a complete controller by avoiding evaluation
of a whole controller made of segmental oscillators which do not oscillate correctly even
when isolated. Decomposition presents the risk, however, of misleading the evolution as
the fittest solutions of one stage may not necessarily be the best starting elements for
the next stage. The segmental oscillators evolved in our first stage, for instance, have
not been rewarded on their capacity to be interconnected, which may have constituted a
handicap for the next stages.

Encoding scheme The simple encoding scheme which directly encodes synaptic weights
and extents of interconnections into a chromosome meant that search was performed in a
well defined and limited space of possible solutions (fixed neuron models, fixed maximum
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number of neurons and left-right symmetry). Despite these limitations, the multidimen-
sional search space was still large enough to generate a variety of interesting central
pattern generators. One way to enlarge the search space could be to include the para-
meters of the neuron dynamics into the encoding. Initial tests show that the GA is
able to evolve both these neuron parameters and the connectivity and generate working
CPGs. Another interesting extension is to use an indirect encoding, such as a devel-
opmental program, which allows modularity and does not limit the number of neurons
(see [Kodjabachian & Meyer 95| for a review). In [Ijspeert & Kodjabachian 98], we re-
port how such a developmental encoding can be used to evolve swimming controllers for
the lamprey in a single evolutionary stage.

Definition of the fitness functions Defining the fitness functions probably constitutes
the most important part of the method. Our objectives were to develop CPGs capable
of producing stable oscillations and of modulating the speed of swimming by varying,
through a few external signals, the frequency and the phase lag of the oscillations. Once
the objectives were defined, relatively little iteration was needed to define a suitable set
of fitness functions. The functions are products of factors between 0 and 1 rewarding
qualitative and quantitative aspects, which means that solutions which perform evenly
in all aspects receive the highest fitness value. Both neural (e.g. the MN frequency)
and mechanical (e.g. the speed of swimming) variables are rewarded, with the import-
ance of neural aspects gradually decreasing and those of mechanical aspects increasing
over the evolutionary stages. Ideally, only mechanical aspects should be examined as
they alone effectively determine the quality of a swimming controller; rewarding neural
activities presents the risk of biasing the search to particular network architectures. How-
ever, rewarding only mechanical variables would not have allowed the staged evolutionary
approach discussed above.

GA and connectionist models GAs present several interesting features for the design
of connectionist models compared to traditional learning algorithms. Learning algorithms
for dynamical neural networks such as variations of the backpropagation algorithm, (see
[Pearlmutter 95|, for instance), iteratively update synaptic weights given an error function
which calculates the difference between the current and the desired state trajectories of
the network. These algorithms compute the gradient of the error function in terms of
the synaptic weights and update the weights accordingly (gradient search). GAs are
comparatively easier to implement and to use. Firstly, the fitness function does not
need to be differentiable or even continuous. Secondly, there is no need to provide a
specific oscillation (limit cycle) that the network should learn. Learning algorithms are
restricted to problems in which the desired state trajectory is known in advance, which
is not the case for many control problems. In our case, using a GA has allowed us
to characterise the desired behaviour of the network at a “higher” level, for instance
in terms of the range of frequencies which can be produced or in terms of the speed
of swimming of the mechanical simulation. Also, the parallel and stochastic nature of
GAs makes them less likely to be trapped in a local optimum than the gradient search
of learning algorithms. Finally, GAs are particularly flexible and the type of evolved
controllers can be modified at three levels: the encoding (e.g. by adding or removing
constraints on the connectivity), the GA operators (e.g. adding a pruning operator)
or the fitness function (e.g. adding or removing factors). These properties of GAs and
evolutionary algorithms have made them a popular method for designing neural controllers
for animats [Beer & Gallagher 92, Gruau 95, Kodjabachian & Meyer 98|.
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GA for neurobiological modeling The fact that the GA was able to find sets of
synaptic weights and interconnections for CPGs when the search space was restricted to
solutions presenting the biological segmental connectivity showed that it has the potential
to be a useful tool for developing neurobiological models. The evolutionary process can
indeed be used to generate a significant part (the synaptic weights and the intersegmental
connections) of the connectionist model that Ekeberg set up by hand. Although it is
possible, in this case, to define satisfactory values by hand, the GA proved useful for
searching the different possibilities and for optimizing the synaptic weights in order to
produce a larger range of frequencies. Several researchers in neurobiology are currently
using evolutionary algorithms in a similar way, either for setting synaptic weights of
neural network models [Eurich et al. 95, Eurich et al. 97], or for determining conductance
parameters of biophysical models of single neurons [West & Wilcox 97]. From a general
point of view, note that, although the GA can be very useful for demonstrating that a
model can produce a specific behaviour (by finding efficient sets of unknown variables),
it is less useful for invalidating a hypothetical model as an inability to find successful
variable instantiations may be due to failings of the model or to problems with the GA
set up, or both.

4.2 Discussion of the evolved controllers

Several interesting CPGs have been successfully evolved. A first observation is thus that
there exists a variety of possible connectivities which produce the neural activities neces-
sary for swimming.” We have demonstrated that there exist solutions alternative to the
biological CPG which can control swimming with the same efficiency. These solutions dif-
fer from Ekeberg’s biological model in terms of which neurons are interconnected, of the
excitatory or inhibitory influence of the interneurons and even of the number of neurons
involved in the rhythmogenesis.

Segmental oscillators We have evolved a diversity of artificial segmental oscillators
with significantly larger ranges of frequencies than Ekeberg’s segmental oscillator. Al-
though one oscillator has a similar structure to the biological one, most evolved networks
have interneurons that play other roles than in the biological network and have other
signs. There is therefore no preferred role and sign for each dynamics of the different
neuron models. A majority of oscillators are based on only four inhibitory interneurons,
showing that, at least at the connectionist level, excitatory interneurons are not necessary
for the production of oscillations over large frequency ranges.

Multi-segmental controllers The evolution of multi-segmental controllers showed
that segmental networks could be interconnected in several ways and produce stable
oscillations with the necessary phase lags for swimming. Similary to the biological model,
swimming at different speeds and with different wavelengths of undulations can be pro-
duced by varying simple external signals (the excitation applied to the CPG). Turning can
also be induced when one side of the controller receives more excitation than the other.
The evolved controllers can generally cover larger ranges of frequency, phase and speed
than Ekeberg’s model but with less independence in the control of the frequency and the
phase between segments. A general observation on the coupling between segments is that

7 A similar observation was made by Lockery for the leech bending reflex, where many different networks
could produce a physiologically accurate local bending input-output function [Lockery & Sejnowski 93].
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there is no systematic asymmetry of interconnection favouring one direction but rather
asymmetries in both directions which depend on the segmental connection. Note that the
coupling of both Ekeberg’s and the evolved controllers is a little bit crude in the sense
that, except for the segments at the extremities, the synaptic weights of the extensions of
a segmental connection are the same for all connected segments. It could be interesting
to evolve, for each coupling, a normalising function which would determine the synaptic
strengths depending on the length of the projection, in order to allow, for instance, a
decrease of the influence of a segment on another with the distance separating them.

Sensory feedback The evolutions of connections from stretch sensitive cells illustrates
how sensory feedback can be used by the evolved CPGs for coordinating the neural activ-
ity with the actual movements of the body and allowing the lamprey to cross a speed
barrier. The feedback increases the stiffness of the body and acts as a burst terminator
which switches the neural activity to the side which is excessively stretched. These pre-
liminary experiments were realised with fixed external commands to the CPG (swimming
straight) and the crossing of the barrier was therefore due to the passive properties of
the CPG with sensory feedback. As active corrections in the commands may also help
the lamprey to cross the barrier, further experiments should include these in order to
determine the respective importance of sensory feedback and higher commands from the
brain for crossing a barrier (this point was not considered in [Ekeberg et al. 95]).

Higher control centers As the speed and the direction of swimming can be modulated
through two input signals, the movements of the simulated lamprey (in a plane) can be
determined. The evolved controllers can therefore be used by higher neural centers for
the generation of simple behaviours, with the two input nodes of the CPG providing
the interface between the CPG and the higher control centers. It would therefore be
interesting to extend the simulation by adding a simple simulated visual system to it and
to evolve higher neural centers for simple sensory-motor coordination experiments such
as avoiding obstacles or approaching and attaching to a host (the lamprey is a parasite).

5 Conclusion

This paper has described how a genetic algorithm can be used to develop connectionist
neural networks for the control of anguiliform swimming. Inspired by Ekeberg’s connec-
tionist model of the central pattern generator of the lamprey, alternative artificial solutions
have been successfully evolved. This work shows firstly that the genetic algorithm can be
an interesting design technique for dynamical recurrent networks applied to locomotion
control. With the technique, we have evolved networks which efficiently control the swim-
ming of a simulated lamprey by producing stable oscillations whose frequencies and phase
lags can be modulated by simple external signals. This work also illustrates that the bio-
logical connectivity is not unique and that it is possible to connect the interneurons of
Ekeberg’s model differently and obtain other efficient solutions. In particular, alternative
solutions which cover larger frequency, lag and speed ranges can be obtained. Finally, we
show how the same technique for evolving artificial solutions could potentially be used
as a tool for developing neurobiological models. By incorporating biological knowledge of
the real lamprey into the encoding and the evaluation function of the genetic algorithm,
the evolutionary process can be used to find variables which are difficult to determine,
in this case synaptic weights, for the production of a desired behaviour. Solutions which
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satisfy the biological constraints and produce oscillations over a larger range of frequency
than the original biological model have, for instance, been successfully evolved.
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A Fitness functions

A.1 Fitness of segmental oscillators

Fitness = fit_oscil - fit_connectivity - fit_freq € [(0.05)°, 1]

where
fit-oscil = fitl- fit2- fit3 € [(0.05) 1]
—1.357 - con_ratio + 1.407 if con_ratio € [0.3, 1]
t_connectivity = . it con_ratio =
fi ity 0.05 if ; 1
1 if con_ratio < 0.3
[ 0.05 if fit_oscil < 0.45, otherwise:
0.0864 - MALSTEG 4364 3 MALSTEG o 1q 19
man_freq man_freq
fitfreg =) .05 if maz_freq _
: min_freq
1 if maz_freq 1o
\ man_freq

The function fit_oscil is made of three factors which reward activity of the motoneurons
which is varying (fit1), regular (fit2) and out of phase between left and right motoneurons
(fit3). These factors are functions of statistical measures of the motoneuron signals (such
as the standard deviation of the neuron output, the number of zeros, the difference of
area under the output curves,...). They are bounded between 0.05 (bad behaviour) and 1
(good behaviour) and vary linearly between these values for the corresponding variables.
The bounds for each variable have been determined by hand on 40 examples of different
behaviours from initial experiments. It is possible to fix these bounds such that fit_oscil
clearly makes the difference between interesting solutions and the others. A limit of 0.45
is thus determined above which a solution is certain to oscillate regularly with opposite
behaviour between left and right motoneurons.® The function fit_connectivity rewards
solutions with reduced connectivity. It is bounded between 0.05 and 1 and varies linearly
between these values depending on the connectivity ratio (con_ratio), the ratio between
the number of connections and the maximum number of possible connections (56). The
smaller the connectivity the higher the reward, with a maximum reward of 1 for solutions
with a connectivity ratio smaller than 0.3 (fewer than 18 connections). The factor fit_freq
rewards solutions which can oscillate over a large range of frequencies when the excitation
from the brain stem is varied. The range of frequencies is only measured if the solution
oscillates regularly and with opposite behaviour between left and right (fit_oscil > 0.45)
at the default level of excitation. The frequency range, the ratio between maximum and
minimum frequencies, is measured by making a set of simulations at different levels of
excitation. Only ranges in which the frequency and the amplitude of the motoneuron
signals increase monotonically with the excitation level are rewarded.® Note that because

80f the 40 examples of neural activities, 17 correspond to interesting behaviours. With the chosen
fixed bounds of fit, fit2 and fit3, all the good behaviours have a fit_oscil value higher than 0.6 and all
the others have a value lower than 0.25, with most lower than 0.1.

9The condition that the amplitude of the neural activity should not decrease when the frequency
increases is added to prevent an antagonistic effect on the speed of swimming, as tests with the mechanical
simulation showed that, in general, increases of the frequency or the amplitude of the motoneuron signals
increase the speed of swimming.
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the duration of a simulation is fixed and that a minimum of oscillations is required for
verifying the stability of the signals, the lowest measurable frequency is approximately
1.0 Hz.

A.2 Fitness of multi-segmental controllers

Fitness = min_fit_oscil - fit_lagcontrol - fit_freqcontrol - fit_speed
where

e min_fit_oscil is the minimum fit_oscil value between segments 1,10,20,..,100 when the
controller is simulated (simulations of 3000 ms) with an excitation level of ezcit0,
corresponding to the middle of the range of excitations with which the segmental
oscillator can oscillate, and without extra excitation on the first segments.

lag_rangel .
e fit_lagcontrol = 0.05 + 1+freq_rangel if<1

1 otherwise
Lag rangel and freq_rangel are measured by making several simulations at a fixed
level of excitation (ezcit0) and with an increasing amount of extra excitation.
The lag range is non-zero only if the oscillations are regular in all segments
(min_fit_oscil>0.45) and if the lag increases monotonically with the amount of extra
excitation. The lag range is divided by the frequency range in order to reward solu-
tions which can change the lag between segments independently of the frequency.

0.05 + Jree-rangee e g

e fit_freqcontrol = 1+lag_range2

otherwise

Freq_range2 and lag_range2 are measured by making several simulations with excita-
tion levels varying around ezcit0 and with a fixed amount of extra excitation extra0.
The value extra0 is calculated from the previous lag measurement if lag_rangel in-
cludes a lag of 1%. Eztra0 is then defined by taking the value of extra excitation
corresponding to the lag closest to 1%. The frequency range is non-zero only if the
value erxtra(Q exists, and if the frequency increases monotonically with the level of
excitation.

0.05 + speed_range if <1

1 otherwise

Speed_range corresponds to the range of speeds covered by all the simulations made
for the definition of lag_fregcontrol and fit_freqcontrol.

o fit_speed =

The different value ranges are measured as the difference between the maximum and
the minimum value and are normalised by a value corresponding to a target value. The
targets have been fixed to 2.5% for the lag ranges, 10 Hz for the frequency ranges and 0.8
m/s for the speed range.

A.3 Fitness for sensory feedback

Fitness = fit_progression - fit_deviation - fit_speed_constancy

where
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e fit_progression varies linearly between (and is limited to) 0.05 and 1 when the max-
imum progression of the head of the lamprey varies between 0 and 450 mm (width
of the speed barrier plus the body length). The progression is measured as the
distance (in the direction of swimming) between the head of the lamprey and the
entry point to the barrier,

e fit_deviation varies linearly between 0.05 and 1 as the cosine of the deviation angle
(measured between the initial direction of swimming and the direction after entry
into the barrier) varies between 0 and 1,

o fit_speed_constancy varies linearly between 0.05 and 1 when the relative difference
between the speeds with and without sensory feedback varies between 50% and 0%.
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